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Chapter	Chapter	4	0	MATLAB	problems	Chapter	Chapter	Chapter	Chapter	Chapter	Chapter	Chapter	Chapter	Chapter	5	Chapter	2	-	Exercises	1.	Among	the	shifts	of	EVIRE,	there	are	two	words:	arena	and	river.	Therefore,	Anthony	cannot	determine	where	to	meet	Caesar.	2.	The	inverse	of	9	mod	26	is	3.	Therefore,	the	decryption	function	is	x	=	3(y	2)
=	3y	2	(mod	26).	Now	simply	decrypt	letter	by	letter	as	follows.	U	=	20	so	decrypt	U	by	calculating	(mod	26)	=	2,	and	so	on.	The	decrypted	message	is	cat.	3.	Changing	the	plaintext	to	numbers	yields	7,	14,	22,	0,	17,	4,	24,	14,	20.	Applying	5x+7	to	each	yields	=	(mod	26),	=	77	25,	etc.	Changing	back	to	letters	yields	QZNHOBXZD	as	the	ciphertext.	4.
Let	mx	+	n	be	the	encryption	function.	Since	h	=	7	and	N	=	13,	we	have	m	7	+	n	13	(mod	26).	Using	the	second	letters	yields	m	0	+	n	14.	Therefore	n	=	14.	The	first	congruence	now	yields	7m	1	(mod	26).	This	yields	m	=	11.	The	encryption	function	is	therefore	11x	Let	the	decryption	function	be	x	=	ay	+	b.	The	first	letters	tell	us	that	7	a	2	+	b	(mod
26).	The	second	letters	tell	us	that	0	a	17	+	b.subtracting	yields	7	a	(	15)	11a.	Since	(mod	26),	we	have	a	(mod	26).	The	first	congruence	now	tells	us	that	b,	so	b	=	1.	The	decryption	function	is	therefore	x	3y	+	1.	Applying	this	to	CRWWZ	yields	happy	for	the	plaintext.	6.	Let	mx+n	be	one	affine	function	and	ax+b	be	another.	Applying	the	first	then	the
second	yields	the	function	a(mx	+	n)	+	b	=	(am)x	+	(an	+	b),	which	is	an	affine	function.	Therefore,	successively	encrypting	with	two	affine	functions	is	the	same	as	encrypting	with	a	single	affine	function.	There	is	therefore	no	advantage	of	doing	double	encryption	in	this	case.	(Technical	point:	Since	gcd(a,26)	=	1	and	gcd(m,26)	=	1,	it	follows	that
gcd(am,26)	=	1,	so	the	affine	function	we	obtained	is	still	of	the	required	form.)	7.	For	an	affine	cipher	mx	+	n	(mod	27),	we	must	have	gcd(27,m)	=	1,	and	we	can	always	take	1	m	27.	So	we	must	exclude	all	multiples	of	3,	which	leaves	18	possibilities	for	m.	All	27	values	of	n	are	possible,	so	we	have	=	486	keys.	When	we	work	mod	29,	all	values	1	m
28	are	allowed,	so	we	have	=	812	keys.	8.	(a)	In	order	for	α	to	be	valid	and	lead	to	a	decryption	algorithm,	we	need	gcd(α,	30)	=	1.	The	possible	values	for	α	are	1,	7,	11,	13,	17,	19,	23,	29.	(b)	We	need	to	find	two	x	such	that	10x	(mod	30)	gives	the	same	value.	There	are	many	such	possible	answers,	for	example	x	=	1	and	x	=	4	will	work.	1	6	2	This
corresponds	to	the	letters	b	and	e.	9.	If	x	1	=	x	2	+(26/d),	then	αx	1	+β	=	αx	2	+β+(α/d)26.	Since	d	=	gcd(α,26)	divides	α,	the	number	α/26	is	an	integer.	Therefore	(α/d)26	is	a	multiple	of	26,	which	means	that	αx	1	+	β	αx	2	+	β	(mod	26).	Therefore	x	1	and	x	2	encrypt	to	the	same	ciphertext,	so	unique	decryption	is	impossible.	10.	(a)	In	order	to	find
the	most	probable	key	length,	we	write	the	ciphertext	down	on	two	strips	and	shift	the	second	strip	by	varying	amounts.	The	shift	with	the	most	matches	is	the	most	likely	key	length.	As	an	example,	look	at	the	shift	by	1:	B	A	B	A	B	A	A	A	B	A	B	A	B	A	B	A	A	A	B	A	*	*	This	has	a	total	of	2	matches.	A	shift	by	2	has	6	matches,	while	a	shift	by	3	has	2
matches.	Thus,	the	most	likely	key	length	is	2.	(b)	To	decrypt,	we	use	the	fact	that	the	key	length	is	2	and	extract	off	every	odd	letter	to	get	BBBAB,	and	then	every	even	letter	to	get	AAAAA.	Using	a	frequency	count	on	each	of	these	yields	that	a	shift	of	0	is	the	most	likely	scenario	for	the	first	character	of	the	Vigenere	key,	while	a	shift	of	1	is	the	most
likely	case	for	the	second	character	of	the	key.	Thus,	the	key	is	AB.	Decrypting	each	subsequence	yields	BBBAB	and	BBBBB.	Combining	them	gives	the	original	plaintext	BBBBBBABBB.	11.	If	we	look	at	shifts	of	1,	2,	and	3	we	have	2,	3,	and	1	matches.	This	certainly	rules	out	3	as	the	key	length,	but	the	key	length	may	be	1	or	2.	In	the	ciphertext,	there
are	3	A	s,	5	B	s,	and	2	C	s.	If	the	key	length	were	1,	this	should	approximate	the	frequencies.7,.2,.1	of	the	plaintext	in	some	order,	which	is	not	the	case.	So	we	rule	out	1	as	the	key	length.	Let	s	consider	a	key	length	of	2.	The	first,	third,	fifth,...	letters	are	ACABA.	There	are	3	A	s,	1	B,	and	1C.	These	frequencies	of.6,.2,.2	is	a	close	match	to.7,.2,.1
shifted	by	0	positions.	The	first	element	of	the	key	is	probably	A.	The	second,	fourth,...	letters	of	the	ciphertext	are	BBBBC.	There	are	0	A	s,	4	B	s,	and	1	C.	These	frequencies.0,.8,.2	and	match.7,.2,.1	with	a	shift	by	1.	Therefore	the	second	key	element	is	probably	B.	Since	the	results	for	length	2	match	the	frequencies	most	closely,	we	conclude	that	the
key	is	probably	AB.	12.	Since	the	entries	of	A	i	are	the	same	as	those	in	A	0	(	shifted	a	few	places)	the	two	vectors	have	the	same	length.	Therefore	A	0	A	i	=	A	0	A	i	cos	θ	=	A	0	2	cos	θ.	Note	that	cos	θ	1,	and	equals	1	exactly	when	θ	=	0.	But	θ	=	0	exactly	when	the	two	vectors	are	equal.	So	we	see	that	the	largest	value	of	the	cosine	is	when	A	0	=	A	i.
Therefore	the	largest	value	of	the	dot	product	is	when	i	=	Change	YIFZMA(	to	pairs	of	numbers:	)	(	(24,	8),	)(5,	25),	(12,	0).	Invert	the	matrix	to	get	N	=	(mod	26).	Calculate	(24,8)N	=	(4,20),	(5,25)N	=	(17,4),	(12,0)N	=	(10,0).	Change	back	to	letters:	eureka.	7	(	)	a	b	14.	Suppose	the	encryption	matrix	M	is.	Change	the	ciphertext	c	d	to	numbers:	(6,	4),
(25,	23),	(3,	18).	Change	the	plaintext	to	numbers:	(18,	14),	(11,	21),	(4,3).	We	know	(18,14)M	(6,4),	etc.	We	ll	use	(11,21)M	(25,23)	and	(4,3)M	(3,18)	to	get	equations	for	a,b,c,d,	which	are	most	(	)(	)	a	b	easily	put	in	matrix	form:	(	)	(	4	3	c	d	of	mod	26	is	(	)	(	)	a	b	12	3	M	=.	c	d	Suppose	the	matrix	has	the	form	(	).	The	inverse	).	Multiply	by	this	matrix	to
obtain	(	α	β	M	=	γ	δ	)	Then	the	encryption	of	a	plaintext	x	=	(b,a)	=	(1,0)	yields	(α,β).	We	know	this	corresponds	to	HC,	and	hence	α	=	7	and	β	=	2.	The	second	piece	of	information	is	that	zz	encrypts	to	GT.	This	corresponds	to	a	plaintext	of	(25,25)	or	equivalently	(	1,	1).	Using	this	yields	α	γ	=	6	and	β	δ	=	19.	Thus,	γ	=	13	and	δ	=	(a)	(	The	plaintext	)	is
((3,14),	(13,	)	19).	The	ciphertext	(	is	(4,11),	)	(13,	8)	We	have	M.	The	inverse	of	mod	26	(	13	)	(	)	is.	Multiplying	by	this	inverse	yields	M	(	3	14	(b)	We	have	(	)	find	M	)	(	4	11	M	).	Proceeding	as	in	part	(a),	we	17.	Suppose	the	plaintext	is	of	the	form	(x,y),	then	the	ciphertext	is	of	the	form	(x	+	3y,2x	+	4y)	(mod	26).	There	will	be	many	possible	plaintexts
that	will	map	to	the	same	ciphertext.	We	will	try	to	make	plaintexts	that	yield	a	ciphertext	of	the	form	(0,	).	To	do	so,	we	will	have	the	relationship	x	=	3y	(mod	26).	Now	we	need	to	find	two	y	values	that	produce	the	same	2(	3y)	+	4y	=	2y	(mod	26).	If	we	take	y	=	4	and	y	=	17	then	we	get	the	same	value	for	2y	(mod	26).	Thus,	(14,4)	and	(1,17)	are	two
plaintexts	that	map	to	(0,18).	18.	We	will	need	to	use	three	different	plaintexts.	First,	choose	(x,y)	=	(0,0).	This	will	produce	a	ciphertext	that	is	precisely	(e,f).	Next,	try	(x,y)	=	(1,0).	This	will	produce	a	ciphertext	that	is	(a,b)	+	(e,f).	We	may	subtract	off	(e,f)	to	find	(a,b).	Finally,	use	(x,y)	=	(0,1)	to	get	(c,d)	+	(e,f)	as	the	ciphertext.	We	may	subtract	off
(e,f)	to	get	(c,d).	8	4	19.	As	is	Section	2.11,	set	up	the	matrix	equation	c	c	c	2	0	This	yields	c	0	=	1,c	1	=	0,c	2	=	1,	so	the	recurrence	is	k	n+3	k	n	+	k	n+2.	The	next	four	terms	of	the	sequence	are	1,	0,	0,	1.	(	)(	)	1	0	c0	20.	The	sequence	is	1,0,1,0,1,0,1,....	The	matrix	equation	is	0	1	c	(	)	1	1.	This	yields	c	0	0	=	1,c	1	=	0,	so	k	n+2	k	n.	21.	Set	up	the
matrix	equation	(	)	(	)	(	)	xn	x	n+1	c0	xn+2	=.	x	n+1	x	n+2	c	1	x	n+3	Using	the	values	provided,	we	obtain	(	)(	c0	c	1	)	=	(	0	2	).	The	inverse	of	the	matrix	can	be	found	to	be	(	)	(	=	)	(mod	3)	Multiplying	both	sides	of	by	the	inverse	matrix,	yields	c	0	=	2	and	c	1	=	Use	x	1,	x	2	and	x	3	to	solve	for	c	1	by	obtaining	c	(mod	5).	Thus,	c	1	=	4.	Next,	use	x	2,	x	3
and	x	4	to	solve	for	c	0.	We	get	c	0	+c	1	+2	(mod	5)	0,	and	hence	c	0	=	The	number	of	seconds	in	120	years	is	Therefore	you	need	to	count	/(	)	numbers	per	second!	24.	(a)	The	ciphertext	will	consist	of	one	letter	repeated.	However,	there	is	no	way	of	deducing	what	the	key	is.	(b)	The	ciphertext	will	consist	of	one	letter	repeated.	However,	there	is	no
way	of	deducing	what	the	key	is.	(c)	The	ciphertext	will	consist	of	a	continuous	stream	of	the	letter	A.	This	is	easy	to	detect.	However,	there	will	be	no	way	to	tell	what	the	key	is.	25.	(a)	The	ciphertext	will	correspond	to	a	shifted	version	of	the	key	word	that	is	repeated	many	times.	The	periodic	nature	of	the	resulting	ciphertext	will	cause	Eve	to
suspect	the	plaintext	is	a	single	letter,	while	the	period	of	the	repeating	ciphertext	will	correspond	to	the	key	length.	(b)	Using	the	fact	that	no	English	word	of	length	six	is	the	shift	of	another	English	word,	simply	treat	the	Vigenere	key	as	if	it	were	the	plaintext	and	the	9	single	character	plaintext	as	if	it	were	the	shift	in	a	shift	cipher.	Decrypting	can
be	done	by	trying	all	possible	shifts	of	the	first	six	characters	of	the	ciphertext.	One	of	these	shifts	will	be	a	word	that	corresponds	to	the	Vigenere	key.	(c)	If	we	use	the	method	of	displacement,	then	shifting	by	six	will	have	the	highest	number	of	matches.	In	fact,	every	place	will	match	up.	This	will	be	easy	to	detect.	However,	shifting	the	ciphertext	by
one	place	will	just	yield	the	amount	of	matches	that	occur	when	the	repeated	key	is	shifted	by	one	place.	In	particular,	the	key	word	will	most	likely	not	have	that	many	matches	with	itself	when	shifted	over	one	place.	Similarly	for	shifts	of	two,	three,	four,	and	five.	As	a	result,	other	shifts	will	have	a	much	smaller	amount	of	matches.	5	10	Chapter	3	-
Exercises	1.	(a)	Apply	the	Euclidean	algorithm	to	17	and	101:	101	=	=	Working	back	yields	1	=	=	17	(	)	=	(	1)	(b)	Since	=	1,	we	have	(mod	101).	Therefore	(mod	101).	2.	(a)	Apply	the	Euclidean	algorithm	to	7	and	30:	30	=	=	Working	backwards	yields	1	=	=	7	3	(30	4	7)	=	(	3)	30.	Therefore	(mod	30),	so	d	=	13.	(b)	Let	c	m	7	(mod	31)	be	the	ciphertext.
Claim:	c	13	m	(mod	31).	Proof:	c	1	3	(m	7	)	13	m	91	(m	30	)	3	m.	If	m	0	(mod	31)	then	m	30	1	(mod	31)	by	Fermat.	Then	c	m	m.	If	m	0	(mod	31),	then	c	m	7	0,	so	c	m.	Therefore	c	13	m	for	all	m.	Therefore	decryption	is	performed	by	raising	the	ciphertext	to	the	13th	power	mod	(a)	gcd(12,236)	=	4,	so	divide	both	sides	by	4	to	obtain	3x	7	(mod	59).	The
inverse	of	3	mod	59	is	20,	so	multiply	both	sides	by	20	to	obtain	x	(mod	59).	This	yields	x	22,81,140,199	(mod	236).	(b)	30	is	not	divisible	by	4	=	gcd(12,236),	so	there	are	no	solutions.	4.	(a)	=	=	=	=	=	=	=	=	11	7	Therefore,	gcd(30030,	257)	=	1.	(b)	If	257	is	composite,	it	is	divisible	by	a	prime	p	257	=	The	primes	satisfying	this	are	exactly	the	prime
factors	of	Since	the	gcd	is	1,	none	of	them	divide	257,	so	257	is	prime.	5.	(a)	4883	=	=	=	Therefore,	the	gcd	is	257.	(b)	We	know	that	both	numbers	have	257	as	a	factor.	This	yields	4883	=	and	4369	=	(a)	The	first	two	steps	of	the	Euclidean	algorithm	are	It	continues	in	this	way	until	Therefore,	the	gcd	is	1.	(b)	F	n	=	1	F	n	1	+	F	n	2	F	n	1	=	1	F	n	2	+	F
n	3.	2	=	=	=	=	=	=	Therefore,	the	gcd	is	1.	(c)	The	first	step	of	the	Euclidean	algorithm	is	a	=	10	Fn	2	b	+	c,	where	c	consists	of	F	n	2	repeated	1	s.	Continuing	in	this	way,	in	each	step	we	divide	F	j	1	repeated	1	s	into	F	j	repeated	1	s	and	get	a	remainder	consisting	of	F	j	2	repeated	1	s.	Eventually,	we	get	down	to	the	computations	of	part	(b),	and	then
obtain	that	the	gcd	is	(a)	If	ab	0	(mod	p),	then	p	ab.	By	the	Corollary	on	page	64,	since	p	is	prime,	either	p	a	or	p	b.	Therefore,	either	a	0	(mod	p)	or	b	0	(mod	p).	(b)	We	follow	the	proof	of	the	Corollary	on	page	64.	Since	gcd(a,n)	=	1,	there	are	integers	x,y	such	that	ax+ny	=	1.	Multiply	by	b	to	obtain	abx+bny	=	b.	Since	n	ab,	both	terms	on	the	left	are
multiples	of	n.	Therefore	n	b.	8.	(x+1)(x	1)	0	(mod	p)	implies,	by	3(a),	that	either	x+1	0	(mod	p)	or	x	1	0	(mod	p).	Therefore	x	±1	(mod	p).	12	8	9.	One	solution	is	to	look	at	the	numbers	congruent	to	3	(mod	10)	until	we	find	one	that	is	2	(mod	7):	3,	13	6,	23	2	(mod	7).	Therefore	x	23	(mod	70).	10.	Suppose	there	are	x	people.	Then	x	1	(mod	3),x	2	(mod
4),x	3	(mod	5).	The	last	two	congruences	combine	to	x	18	(mod	20).	List	the	numbers	that	are	18	(mod	20)	until	you	find	one	that	is	1	(mod	3).	The	answer	is	x	58	(mod	60).	11.	If	a	0	(mod	p),	then	Fermat	says	that	a	p	1	1	(mod	p).	Multiply	by	a	to	get	a	p	a	(mod	p).	If	a	0	(mod	p),	then	a	p	0	p	0	a	(mod	).	Therefore	a	p	a	(mod	p)	for	all	a.	12.	By	Fermat	s
theorem,	(mod	101).	Therefore,	(2	100	)	Therefore,	the	remainder	is	Last	two	digits	means	we	work	mod	100.	Since	φ(100)	=	40,	Euler	s	theorem	says	that	(mod	100).	Therefore,	(	)	The	last	two	digits	are	(a)	7	7	(	1)	(mod	4).	(b)	7	7	=	3	+	4k	for	some	k.	By	Euler	s	theorem,	(mod	10).	Therefore,	7	77	=	7	3	(7	4	)	k	k	(mod	10).	The	last	digit	is	(a)	φ(1)	=
1,φ(2)	=	1,φ(5)	=	4,φ(10)	=	4.	The	sum	is	10.	(b)	φ(1)	=	1,φ(2)	=	1,φ(3)2,φ(4)	=	2,φ(6)	=	2,φ(12)	=	4.	The	sum	is	12.	(c)	The	sum	of	φ(d),	for	all	of	the	divisors	d	of	n,	equals	n.	16.	(a)	Since	p	a,	Fermat	says	that	a	p	1	1	(mod	p).	For	p	=	7,	we	have	a	6	1	(mod	7),	so	a	(a	6	)	(mod	7).	Since	1728	=	and	1728	=	18	96,	a	similar	argument	works	for	p	=	13
and	for	p	=	19.	(b)	If	p	a,	then	multiply	the	result	of	(a)	by	a	to	get	a	1729	a	(mod	p).	If	p	a,	then	a	1729	and	a	are	both	0	(mod	p),	so	a	1729	a	in	this	case,	too.	(c)	Fix	a	number	a.	The	Chinese	Remainder	Theorem	says	that	x	a	1729	(mod	7),x	a	(mod	13),x	a	1729	(mod	19)	has	a	unique	solution	x	(mod	1729),	since	1729	=	We	know	two	such	solutions:	x
=	a	(from	part	(b)	and	x	=	a	(trivially).	Since	x	is	unique	mod	1729,	we	must	have	a	a	1729	(mod	1729).	17.	(a)	The	powers	of	2	mod	11	are	2,4,8,5,10,9,7,3,6,1.	This	gives	all	nonzero	congruence	classes	mod	11,	so	2	is	a	primitive	root	mod	11.	(b)	The	inverse	of	3	(mod	10)	is	7.	We	obtain	8	7	(2	3	)	(	(mod	11).	Therefore,	x	=	7.	(c)	This	can	be	done
directly,	but	here	is	another	way.	If	c	0	(mod	11),	then	c	2	j	for	some	j.	Therefore,	c	(8	7	)	j	8	7j	(mod	11),	so	c	is	a	power	of	8.	(d)	Write	xy	=	1	+	(p	1)k.	Then	h	x	(g	y	)	x	g	(g	p	1	)	k	g	1	k	g	(mod	p).	13	9	(e)	Let	c	be	nonzero	mod	p.	Then	c	g	j	(mod	p)	for	some	j,	so	c	(h	x	)	j	h	xj	(mod	p).	Since	every	nonzero	congruence	class	is	a	power	of	h,	we	have	that
h	is	a	primitive	root	mod	p.	18.	(a)	The	determinant	is	=	5	21	(mod	26).	The	inverse	of	the	determinant	is	5	(mod	26).	The	inverse	of	the	matrix	is	therefore	1	21	(	)	5	(	)	(	(b)	The	determinant	is	1	b.	The	matrix	is	invertible	mod	26	exactly	when	gcd(1	b,26)	=	1.	This	happens	when	1	b	is	odd	and	not	0	mod	13,	so	b	0,2,4,6,8,10,12,16,18,20,22,24	(mod
26).	19.	The	determinant	is	9	35	=	26.	This	is	divisible	by	2	and	by	13,	so	these	are	the	two	primes	for	which	the	matrix	is	not	invertible	mod	p.	20.	(a)	We	know	a	φ(n)	1	(mod	n),	by	Euler.	Since	r	is	smallest,	r	φ(n).	(b)	Since	a	r	1,	we	have	a	m	(a	r	)	k	1	k	1	(mod	n).	(c)	By	(b),	a	qr	1.	Therefore,	1	(by	assumption)a	t	a	qr	a	s	1	a	s	a	s.	(d)	Since	a	s	1	and	r
is	the	smallest	positive	integer	with	a	r	1,	we	must	have	s	=	0.	Therefore	t	=	qr,	so	r	t.	(e)	By	Euler,	a	φ(n)	1	(mod	n).	From	part	(d)	with	t	=	φ(n),	we	obtain	ord	n	(a)	φ(n).	21.	(a)	If	r	divides	600,	then	r	=	2	a	3	b	5	c	with	a	3,b	1,c	2.	If	r	<	600,	then	we	cannot	have	a	=	3,b	=	1,c	=	2.	If	a	2,	then	r	=	300.	If	b	=	0	then	r	=	200.	If	c	1	then	r	=	120.	(b)	From
9(e),	we	know	that	ord	601	(7)	600.	If	ord	601	(7)	<	600,	then	it	divides	300,	200,	or	120,	by	(a).	(c)	Suppose	ord	601	(7)	300.	By	9(b),	we	must	have	(mod	601),	which	is	not	the	case.	Therefore,	ord	601	(7)	300.	Similarly,	ord	601	(7)	200	and	ord	601	(7)	120.	(d)	From	(b)	and	(c),	we	cannot	have	ord	601	(7)	<	600.	Since	ord	601	(7)	600	from	9(a),	we
must	have	ord	601	(7)	=	600.	Therefore	the	numbers	7	j	(mod	601),	for	j	=	0,1,...,599	are	distinct,	so	there	are	600	of	them.	This	implies	that	7	is	a	primitive	root	mod	601.	(e)	Calculate	g	(p	1)/qi	(mod	p)	for	i	=	1,2,...,s.	If	each	of	these	is	1	(mod	p),	then	g	is	a	primitive	root	mod	p.	(Of	course,	perhaps	we	should	check	first	that	p	g.)	22.	(a)	We	have	3
16k	2	k	1	(mod	65537)	and	3	32k	(mod	65537).	Therefore	k	and	k.	Write	32k	=	65536l	for	some	l.	Divide	by	32	to	obtain	k	=	2048l,	so	2	11	=	2048	k.	If	2	12	=	4096	k,	then	16k	is	a	multiple	of	=	65536,	which	we	showed	doesn	t	happen.	Therefore	k	is	a	multiple	of	2048,	but	is	not	a	multiple	of	(b)	From	(a),	we	see	that	k	is	an	odd	multiple	of	We	also
know	that	0	k	<	65536,	since	every	nonzero	number	mod	can	be	written	as	a	power	of	3	with	exponent	in	this	range.	There	are	65536/2048=32	multiples	of	2048	in	this	range.	Of	these,	16	are	multiples	of	The	remaining	16	are	possibilities	for	k.	We	now	calculate	m	(mod	65537)	for	m	=	1,3,5,.	We	find	(with	the	help	of	a	computer)	that	m	=	27	works.
So	k	=	=	).	14	(a)	We	claim	that	after	the	kth	step	2,	we	have	r	k	y	b1b2	b	k	(mod	n).	This	is	easily	seen	to	be	the	case	for	k	=	1.	Assume	it	is	true	for	k	1.	We	ll	show	it	s	true	for	k.	We	have	s	k	rk	1	2	y2	b1b2	b	k	1.	Then	r	k	s	k	y	b	k	rk	2yb	k	y	2	b1...b	k	1+b	k	y	b1	b	k	1b	k.	Therefore,	when	k	=	w	we	have	r	w	y	x,	as	desired.	(b)	Write	x	=	b	1...b	w	in
binary	as	in	(a).	We	assume	b	1	=	1.	The	algorithm	is	easily	seen	to	work	when	x	=	0,	so	we	may	assume	w	1.	We	claim	that	after	step	2,	a	=	b	1...b	w	k,	b	y	b	w	k+1...b	w	and	c	y	2k	for	some	value	of	k.	When	we	start,	we	have	k	=	0.	Suppose	we	arrive	at	step	2	with	a	=	b	1...b	w	k,	b	y	b	w	k+1...b	w,	and	c	y	2k.	If	a	is	odd,	then	the	output	of	step	2	is
the	same	as	the	input,	hence	of	the	desired	form.	If	a	is	even,	then	b	w	k	=	0.	We	obtain	the	new	a	=	b	1...b	w	k	1,	b	y	b	w	kb	w	k+1...b	w	(we	may	include	the	extra	bit	at	the	beginning	since	it	is	0),	and	c	y	2k+1.	Therefore	the	output	has	a,b,c	in	the	desired	form	with	k	+	1	in	place	of	k.	Now	let	s	look	at	what	happens	in	step	3.	The	output	of	step	2	is
of	the	form	a	=	b	1...b	w	j,	b	y	bw	j+1...bw	and	c	y	2j	for	some	value	of	j.	If	a	is	even,	step	3	does	nothing,	so	the	output	still	has	the	desired	form.	If	a	is	odd,	then	the	last	bit	b	w	j	of	a	is	1.	The	new	a	is	a	=	b	1...b	w	j	1	0.	Also,	the	new	b	is	y	bw	jbw	j+1...bw	y	2j	y	1bw	jbw	j+1...bw	y	bw	jbw	j+1...bw.	The	new	c	is	still	y	2j.	If	the	new	a	=	0,	then	j	=	w	1,
so	b	y	x.	Therefore	step	5	outputs	y	x,	as	desired.	Otherwise,	step	4	sends	us	to	step	2,	which	outputs	a	=	b	1...b	w	j	1,	b	y	bw	jbw	j+1...bw,	and	c	y	2j+1.	This	is	of	the	desired	form	with	k	=	j	+	1.	Therefore,	the	output	of	step	2	always	has	the	desired	form,	as	claimed.	Since	a	gets	smaller	at	each	application	of	steps	2	and	3,	eventually	a	=	0	and	the
algorithm	stops.	As	pointed	out	above,	the	output	of	step	5	is	then	y	x	(mod	n).	24.	Since	z	j	0	(mod	m	i	)	when	j	i,	we	have	x	a	i	y	i	z	i	a	i	z	1	i	z	i	a	i	(mod	m	i	).	25.	(a)	Solve	x	(mod	11)	to	obtain	x	±1	(mod	11).	Now	solve	x	(mod	13)	to	obtain	x	±4	(mod	13).	There	are	four	ways	to	combine	these	via	the	Chinese	Remainder	Theorem:	x	43,	56,	87,	100
(mod	143).	(b)	This	reduces	to	x	2	77	(mod	11)	and	x	2	77	(mod	13).	The	solutions	satisfy	x	0	(mod	11)	and	x	±5	(mod	13).	These	combine	to	yield	x	44,	99	(mod	143).	26.	Suppose	x	2	1	(mod	p).	Raise	both	sides	to	the	(p	1)/2	power	to	obtain	x	p	1	(	1)	(p	1)/2	(mod	p).	By	Fermat,	x	p	1	1.	Since	p	3]pmod4,	the	exponent	(p	1)/2	is	odd.	Therefore	(	1)	(p	1)/2
=	1.	This	yields	1	1	(mod	p),	which	is	a	contradiction.	Therefore	x	cannot	exist.	27.	(a)	There	are	at	most	4	square	roots	of	x	(mod	n).	Therefore,	several	random	selections	of	these	square	roots	should	include	the	meaningful	message	m.	(b)	Being	able	to	find	square	roots	mod	n	is	computationally	equivalent	to	factoring	n,	which	is	presumed	to	be	hard.
15	11	(c)	Eve	chooses	a	random	number	m	and	computes	x	m	2	(mod	n).	She	gives	x	to	the	machine,	which	outputs	a	square	root	m	of	x.	If	gcd(m,n)	=	1,	there	are	four	possible	m,	namely	m,	m,	and	two	others.	After	a	few	tries,	Eve	should	obtain	m	with	m	±m	(mod	n).	Since	m	2	x	m	2	(mod	n),	a	nontrivial	factor	of	n	is	given	by	gcd(m	m,n).	28.	(a)
Since	r	1	=	a	bq	1	and	d	a,b,	we	have	d	r	1.	Since	r	2	=	b	q	2	r	1	and	d	b,r	1,	we	have	d	r	2.	(b)	Suppose	d	r	1,...,r	j.	Since	r	j+1	=	r	j	1	q	j+1	r	j	and	d	rj	1,r	j,	we	have	d	r	j+1.	By	induction,	we	have	d	r	i	for	all	i.	(c)	Since	r	k	1	=	q	k+1	r	k,	we	have	r	k	r	k	1.	Assume	r	k	r	k	i	for	i	=	1,2,...,j.	Since	r	k	j	1	=	q	k	j+1	r	k	j	+	r	k	j+1	and	r	k	r	k	j,r	k	j+1	by
assumption,	we	have	r	k	r	k	j	1.	By	induction,	r	k	r	i	for	all	i.	(d)	Since	b	=	q	2	r	1	+	r	2	and	r	k	r	1,r	2,	we	have	r	k	b.	Since	a	=	q	1	b	+	r	1	and	r	k	a,r	1,	we	have	r	a.	(e)	Since	d	r	k	for	each	common	divisor	d,	we	have	r	k	d	for	all	common	divisors	d.	Since	r	k	is	a	common	divisor,	it	is	the	largest.	29.	(a)	(	)	123	=	401	Therefore,	there	is	no	solution.	(b)	(	)
43	=	179	Therefore,	there	is	a	solution.	(c)	(	)	1093	=	(	)	(	)	(	)	=	=	=	(	)	(	)	=	=	(	)	(	)	43	1	=	=	(	)	(	)(	)	(	)	(	)	=	=	=	=	Therefore,	there	is	no	solution.	30.	(a)	If	a	b	2	(mod	n),	then	(	a	=	n)	(	)	2	b	=	(±1)	2	=	1.	n	Therefore,	if	(	a	n)	=	1,	then	a	cannot	be	a	square	mod	n.	(b)	)	(	3	35	=	(	)	35	=	3	(	)	2	=	1.	3	(c)	Since	3	is	not	a	square	mod	5,	it	cannot	be	a
square	mod	(	2	15)	=	1,	but	(mod	15).	32.	(a)	(	)	(	)	(	)	=	=	=	16	12	(b)	Since	is	prime,	3	(	)/2	(	)	=	1	(mod	65537).	(c)	The	order	of	3	mod	divides	=	2	16,	hence	is	a	power	of	2.	If	the	order	is	not	2	16,	then	it	divides	2	15	=	32768,	so	(mod	65537).	But	part	(b)	says	that	this	is	not	the	case.	Therefore,	the	order	of	3	must	be	2	16,	and	3	is	a	primitive	root
mod	(a)	The	only	polynomials	of	degree	1	are	X	and	X	+	1,	and	they	are	irreducible.	The	only	polynomials	of	degree	2	are	X	2,X	2	+1,X	2	+X,X	2	+X+1.	But	X	2	and	X	(X	+	1)	2	are	reducible,	and	so	is	X	2	+	X	X(X	+	1).	Only	X	2	+	X	+	1	remains.	If	it	factors,	it	must	be	divisible	by	a	degree	one	polynomial.	Clearly	X	does	not	divide	it.	A	simple
calculation	shows	that	X	+1	does	not	divide	it	either.	Therefore	X	2	+	X	+	1	is	irreducible.	(b)	If	X	4	+X	+1	factors,	it	must	have	an	irreducible	factor	of	degree	at	most	2.	Since	none	of	the	polynomials	from	part	(a)	divide	it,	it	must	be	irreducible.	(c)	X	4	(X	+	1)	X	+	1,	since	we	are	working	with	coefficients	mod	2.	Square	both	sides	to	obtain	X	8	(X	+
1)	2	X	Square	again	to	obtain	X	16	(X	2	+	1)	2	X	(X	+	1)	+	1	X.	(d)	Since	X	4	+	X	+	1	is	irreducible,	polynomials	mod	X	4	+	X	+	1	form	a	field.	Since	X	0	(mod	X	4	+X	+1),	it	has	a	multiplicative	inverse.	Therefore,	we	can	divide	X	16	X	by	X	to	obtain	X	(a)	If	X	is	reducible,	it	must	factor	as	a	product	of	two	degree	one	polynomials.	But	none	of	the
polynomials	X,	X	+1,	X	+2	divides	X	2	+1	mod	3.	Therefore	it	is	irreducible.	(b)	Apply	the	Euclidean	algorithm	to	2X	+	1	and	X	2	+	1:	X	=	(2X)(2X	+	1)	+	(X	+	1)	2X	+	1	=	(2)(X	+	1)	+	2	X	+	1	=	(2X	+	2)(2)	+	0.	Working	backwards,	we	obtain	2	=	(2X+1)	2(X+1)	=	(2X+1)	2((X	2	+1)	(2X)(2X+1))	=	(	2)(X	2	+1)+(X+1)(2X+1).	Therefore,	(X+1)(2X+1)	2
(mod	X	2	+	1).	Multiply	by	2	to	obtain	(2X	+	2)(2X	+	1)	1	(mod	X	2	+	1).	Therefore,	2X	+	2	is	the	multiplicative	inverse	of	1	+	2X.	35.	a	=	q	1	b	+	r	1	with	0	r	1	<	b.	This	means	that	a	b	=	q	1	+	r	1	b	with	0	r	1	/b	<	1.	Therefore,	a	0	=	q	1.	Similarly,	at	each	step	of	the	algorithm,	in	the	notation	of	page	67,	we	have	r	j	2	r	j	1	=	q	j	+	r	j	r	j	1,	which	yields	a
j	1	=	q	j.	36.	(a)	The	values	of	a	0,a	1,a	2,...	for	3	are	1,1,2,1,2,1,2,.	For	7,	they	are	2,1,1,1,4,1,1,1,4,.	The	first	keeps	repeating	1,2.	The	second	keeps	repeating	1,	1,	1,	4.	17	13	(b)	For	d	=	3:	n	=	1,	and	p	1	/q	1	=	1	+	1/1	=	2/1.	We	have	=	1.	For	d	=	7:	n	=	3,	and	p	3	1	=	2	+	q	=	We	have	=	1.	(c)	The	continued	fraction	for	19	starts	with	a	0,a	1,a	2,a	3,a
4,a	5,a	6	equal	to	4,2,1,3,1,2,8.	We	have	n	=	5.	A	calculation	yields	p	5	=	170	and	q	5	=	39.	We	have	=	1.	(Note:	this	method	sometimes	yields	x	2	dy	2	=	1.	In	this	case	x	1	=	x	2	+	dy	2	and	y	1	=	2xy	satisfy	x	2	1	dy	2	1	=	+1.)	37.	Use	a	decimal	approximation	for	e	to	obtain	a	0,a	1,a	2,a	3,	=	2,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,1,14,....	After	the
initial	2,	we	get	blocks	of	1,2n,1	for	n	=	1,2,3,	The	continued	fraction	has	a	0,a	1,a	2,	equal	to	1,1,1,.	We	have	p	n	=	F	n+2	and	q	n	=	F	n+1,	where	F	n	is	the	nth	Fibonacci	number	(see	Exercise	6).	39.	(a)	The	multiples	of	p	are	p,2p,3p,,(q	1)p.	There	are	q	1	of	them.	Similarly	for	the	multiples	of	q.	(b)	The	only	factors	of	pq	are	1,p,q,pq.	If	gcd(m,pq)	>
1,	then	the	gcd	must	be	p,	q,	or	pq.	Therefore,	m	is	a	multiple	of	p,	q,	or	pq,	hence	a	multiple	of	p	or	of	q	(possibly	both).	(c)	If	m	is	a	multiple	of	both	p	and	q,	then	it	is	a	multiple	of	pq,	hence	m	pq.	If	1	m	<	pq,	this	is	impossible.	(d)	We	have	pq	numbers	m	with	1	m	pq.	Remove	m	=	pq,	which	is	the	only	number	satisfying	gcd(m.pq)	=	pq.	Remove	the	q
1	multiples	of	p	and	the	p	1	multiples	of	q.	By	part	(c),	these	two	sets	of	numbers	do	not	overlap.	We	have	therefore	removed	1	+	(q	1)	+	(p	1)	numbers.	There	are	pq	1	(q	1)	(p	1)	=	(p	1)(q	1)	numbers	remaining.	These	are	exactly	the	m	with	gcd(m,pq)	=	(a)	x	1	(mod	4),	x	2	(mod	6)	has	no	solution.	(b)	x	2	(mod	4),	x	4	(mod	6)	has	the	solution	x	=	10	(in
fact,	x	10	(mod	12)	gives	all	solutions).	18	Chapter	4	-	Exercises	1.	(a)	Switch	left	and	right	halves	and	use	the	same	procedure	as	encryption.	The	switch	the	left	and	right	of	the	final	output.	Verification	is	the	same	as	that	on	pages	(b,	c)	1st	round:	M	0	M	1	M	1	[M	0	K	M	1	]	2nd	round:	[M	0	K	M	1	][M	1	M	0	K	M	1	K]	=	[M	0	K	M	1	][M	0	]	3rd	round:
[M	0	][M	0	K	M	1	K	M	0	]	=	[M	0	][M	1	],	which	is	the	plaintext.	Therefore	3	rounds	is	very	insecure!	After	2	rounds,	the	ciphertext	alone	lets	you	determine	M	0	and	therefore	M	1	K,	but	not	M	1	or	K	individually.	If	you	also	know	the	plaintext,	you	know	M	1	are	therefore	can	deduce	K.	2.	If	someone	discovers	the	fixed	key	and	obtains	the	encrypted
password	file,	this	person	can	easily	decrypt	by	the	usual	decryption	procedure.	However,	knowing	the	ciphertext	and	the	plaintext	does	not	readily	allow	one	to	deduce	the	key.	3.	CBC:	We	have	D	K	(C	j	)	C	j	1	=	D	K	(E	K	(P	j	C	j	1	))	C	j	1	=	P	j	C	j	1	C	j	1	=	P	j.	CFB:	C	j	L	8	(E	K	(X	j	))	=	(P	j	L	8	(E	K	(X	j	)))	L	8	(E	K	(X	j	))	=	P	j.	4.	Let	I	denote	the	string
of	all	1	s.	Note	that	the	expansion	E(R	i	1	)	=	E(R	i	1	)	=	E(R	i	1	)	I.	Therefore	E(R	i	1	)	K	i	=	E(R	i	1	)	I	K	i	I	=	E(R	i	1	)	K	i,	so	the	input	to	the	S-boxes	doesn	t	change.	Therefore	the	output	doesn	t	change.	But	L	i	1	=	L	i	1	I,	so	the	resulting	right	side	is	L	i	1	f(r	i	1,K	i	)	=	R	i	I	=	R	i.	Also,	clearly	the	new	left	side	is	the	complementary	string.	So	each
round	of	DES	gives	the	complementary	string,	so	this	is	true	for	the	final	result.	5.	(a)	The	keys	K	1,...,K	16	are	all	the	same	(all	1	s).	Decryption	is	accomplished	by	reversing	the	order	of	the	keys	to	K	16,...,K	1.	Since	the	K	i	are	all	the	same,	this	is	the	same	as	encryption,	so	encrypting	twice	gives	back	the	plaintext.	(b)	The	key	of	all	0	s,	by	the	same
reasoning.	6.	Let	(m,c)	be	a	plaintext-ciphertext	pair.	Make	one	list	of	E	K	(E	K	(m)),	where	K	runs	through	all	possible	keys.	Make	another	list	of	D	K	(c),	where	K	runs	through	all	possible	keys.	A	match	between	the	two	lists	is	a	pair	K,K	of	keys	with	E	K	(E	K	(E	K	(m)))	=	c.	There	should	be	a	small	number	of	such	pairs.	For	each	such	pair,	try	it	on
another	plaintext	and	see	if	it	produces	the	corresponding	ciphertext.	This	should	eliminate	most	of	the	incorrect	pairs.	14	19	15	Repeating	a	few	more	times	should	yield	the	pair	K	1,K	(a)	To	perform	the	meet	in	the	middle	attack,	you	need	a	plaintext	m	and	ciphertext	c	pair	(its	a	known	plaintext	attack).	So,	make	two	lists.	The	left	list	consists	of
encryptions	using	the	second	encryption	E	2	with	different	choices	for	K	2.	Similarly,	the	right	side	contains	decryptions	using	different	keys	for	the	first	encryption	algorithm.	Thus,	the	lists	look	like:	E1(m)	2	=	y	1	E2(m)	2	=	y	2.	E788(m)	2	=	y	788.	z	1	=	D1(c)	1	z	2	=	D2(c)	1.	z	788	=	D788(c)	1.	Note:	The	two	lists	need	not	be	the	same	size,	as	the
different	algorithms	might	have	different	key	lengths,	and	hence	different	amount	of	keys	(see	part	b).	Now,	look	for	matches	between	y	j	and	z	l.	A	match	using	K	2	for	E	2	and	K	1	for	D	1	indicates	E	2	K	2	(m)	=	y	=	D1	K	1	(c)	and	hence	E	1	K	1	)	(EK	2	(m)	=	c.	2	(b)	Observe	that	there	are	26	possibilities	for	β	and	12	possibilities	for	α.	Let	Eα(x)	2	=
αx	(mod	26)	and	let	Eβ	1	(x)	=	x	+	β	(mod	26).	The	composition	of	these	two	gives	the	affine	cipher.	The	total	computation	needed	involves	producing	26	encryptions	for	E	2	and	12	decryptions	for	E	1.	The	total	is	It	suffices	to	look	at	an	arbitrary	round	of	the	encryption	process.	Suppose	we	look	at	the	ith	round,	which	involves	L	i	=	R	i	1,	M	i	=	L	i	1
and	R	i	=	f(k	i,r	i	1	)	M	i	1.	To	undo	this	round,	that	is	to	go	from	{L	i,m	i,r	i	}	to	{L	i	1,M	i	1,R	i	1	}	we	do	the	following:	L	i	1	=	M	i	M	i	1	=	f(k	i,r	i	1	)	R	i	=	f(k	i,l	i	)	R	i	R	i	1	=	L	i.	This	is	of	the	form	of	the	decryption	algorithm	specified	in	the	problem.	9.	(a)	At	the	decryption	side,	the	decryptor	has	{C	1,C	2,	}	and	the	initial	X	1.	To	decrypt,	the
decryptor	starts	with	j	=	1	and	calculates	P	j	=	C	j	L	32	(E	K	(X	j	))	X	j+1	=	R	32	(X	j	)	C	j.	(b)	To	solve	this	problem,	it	is	easiest	to	step	through	registers	step	by	step.	We	start	with	X	1	and	a	sequence	of	ciphtertext	C	1,C	2,C	3,.	To	decrypt	the	first	block,	we	calculate:	P	1	=	C	1	L	32	(E	K	(X	1	))	20	16	X	2	=	R	32	(X	1	)	C	1.	Observe	that	the	decrypted
plaintext	P	1	is	corrupted	because	it	has	the	corrupted	C	1	as	part	of	it,	and	also	that	X	2	X	2	since	it	has	the	corrupted	C	1	as	part	of	it.	The	next	couple	steps	of	decryption	proceed	as	P	2	=	C	2	L	32	(E	K	(	X	2	))	X	3	=	R	32	(	X	2	)	C	2	=	C	1	C	2	P	3	=	C	3	L	32	(E	K	(	X	3	))	X	4	=	R	32	(	X	3	)	C	3	=	C	2	C	3.	At	this	point,	we	have	three	corrupted
plaintexts	P	1,	P	2,	and	P	3.	However,	note	that	by	the	end	of	the	third	round,	the	register	X	4	is	no	longer	corrupted.	The	subsequent	decryption	step	is	P	4	=	C	4	L	32	(E	K	(X	4	))	X	5	=	R	32	(X	4	)	C	4.	Thus,	the	fourth	step	of	decryption	is	uncorrupted.	All	subsequent	decryption	steps	also	will	be	free	of	errors.	10.	In	CBC,	suppose	that	an	error
occurs	(perhaps	during	transmission)	in	block	C	j	to	produce	the	corrupted	C	j,	and	that	the	subsequent	blocks	C	j+1	and	C	j+2	are	ok.	Now	start	decrypting.	If	we	try	to	decrypt	to	get	P	j	we	get	P	j	=	D	K	(	C	j	)	C	j	1	which	is	corrupted	because	the	decryption	of	Cj	will	be	junk.	Next,	try	to	decrypt	to	get	P	j+1	:	P	j+1	=	D	K	(C	j+1	)	C	j	which,	although
D	K	(C	j+1	)	is	correct,	when	we	add	the	corrupted	C	j	we	get	a	corrupted	answer.	Now	proceed	to	try	to	decrypt	C	j+2	to	get	P	j+2	:	P	j+2	=	D	K	(C	j+2	)	C	j+1	which	is	uncorrupted	since	each	of	the	components	are	D	K	(C	j+2	)	and	C	j+1	are	uncorrupted.	11.	Let	K	be	the	key	we	wish	to	find.	Use	the	hint.	Then	C	1	=	E	K	(M	1	)	and	C	2	=	E	K	(M	1	).
Now,	suppose	we	start	a	brute	force	attack	by	encrypting	M	1	with	different	keys.	If,	when	we	use	K	j	we	get	E	Kj	(M	1	)	=	C	1	then	we	are	done	and	the	key	we	desire	is	K	=	K	j.	However,	when	we	use	K	j	we	can	eliminate	another	key.	Here	is	how.	If	E	Kj	(M	1	)	=	C	2	then	we	know	(by	complementation	property)	that	E	Kj	(M	1	)	=	C	2.	Hence,	if	this
happens,	we	know	the	key	is	K	j	since	K	j	would	decrypt	C	2	to	get	M	1.	We	are	effectively	testing	two	keys	for	the	price	of	one!	Hence,	the	key	space	is	cut	in	half	and	we	only	have	to	search	an	average	of	2	54.	21	Chapter	5	-	Exercises	1.	(a)	We	have	W(4)	=	W(0)	T(W(0))	=	T(W(0)).	In	the	notation	in	Subsection	5.2.5,	a	=	b	=	c	=	d	=	0.	The	S-box
yields	e	=	f	=	g	=	h	=	99	(base	10)	=	(binary).	The	round	constant	is	r(4)	=	=	We	have	e	r(4)	=	Therefore,	W(4)	=	T(W(0))	=	We	have	W(5)	=	W(1)	W(4)	=	W(4),	and	similarly	W(7)	=	W(6)	=	W(5)	=	W(4).	(b)	We	have	W(9)	=	W(5)	W(8)	W(8),	since	W(5)	0.	But	W(10)	=	W(6)	W(9)	=	W(6)	W(5)	W(8)	=	W(8),	since	W(6)	=	W(5).	Also,	W(11)	=	W(7)	W(10)
=	W(7)	W(6)	W(9)	=	W(9),	since	W(7)	=	W(6).	2.	(a)	We	have	W(4)	=	W(0)	T(W(0))	=	T(W(0)).	In	the	notation	in	Subsection	5.2.5,	a	=	b	=	c	=	d	=	The	S-box	yields	e	=	f	=	g	=	h	=	22	(decimal)	=	(binary).	The	round	constant	is	r(4)	=	=	We	have	e	r(4)	=	Therefore,	W(4)	=	T(W(0))	=	We	have	W(5)	=	W(1)	W(4)	=	W(4).	Also,	W(6)	=	W(2)	W(5)	=	W(2)
W(1)	W(4)	=	W(4),	since	W(1)	=	W(2).	Finally,	W(7)	=	W(3)	W(6)	=	W(3)	W(2)	W(5)	=	W(5),	since	W(2)	=	W(3).	(b)	W(10)	=	W(6)	W(9)	=	W(6)	W(5)	W(8)	=	W(8),	since	the	entries	of	W(5)	W(6)	are	strings	of	all	1	s.	Finally,	W(11)	=	W(7)	W(10)	=	W(7)	W(6)	W(9)	=	W(9).	3.	(a)	Since	addition	in	GF(2	8	)	is	the	same	as,	we	have	f(x	1	)	f(x	2	)	=	α(x	1	+	x	2
)	=	α(x	3	+	x	4	)	=	f(x	3	)	f(x	4	).	(b)	The	ShiftRow	transformation	permutes	the	entries	of	the	matrix,	which	has	the	effect	of	permuting	the	results	of	the	XOR.	If	x	1	x	2	=	x	3	x	4,	then	this	still	holds	after	permuting	the	entries.	The	MixColumn	transformation	has	the	form	f(x)	=	Mx,	where	M	17..	22	18	is	a	fixed	matrix	and	x	is	a	binary	string
represented	as	a	matrix.	Therefore,	f(x	1	)	f(x	2	)	=	Mx	1	Mx	2	=	Mx	1	+	Mx	2,	since	addition	in	GF(2	8	)	is	XOR.	This	yields	M(x	1	+x	2	)	=	M(x	1	x	2	).	If	x	1	x	2	=	x	3	x	4,	then	we	can	reverse	the	above	steps	to	obtain	f(x	3	)	f(x	4	).	The	RoundKey	Addition	has	the	form	f(x)	=	x	K.	We	have	f(x	1	)	f(x	2	)	=	x	1	x	2	=	x	3	x	4	=	f(x	3	)	f(x	4	).	4.	(a)	It	is	easy
to	see	that	if	functions	f	and	g	have	the	equal	difference	property,	then	the	composition	f	g	has	the	equal	difference	property.	Since	all	steps	in	this	modified	AES	algorithm	have	the	equal	difference	property,	the	composition	of	all	the	steps	has	the	property.	(b)	The	steps	in	E	involve	permuting,	multiplying	by	a	matrix,	and	adding	a	matrix.	Let	E	j	(x)
represent	the	result	after	j	steps	(there	are	30	such	steps).	Let	F	j	denote	the	similar	encryption,	but	where	nothing	is	done	(that	is,	F	j	(x)	=	F	j	1	(x))	in	the	jth	step	if	the	E	j	algorithm	ends	with	AddRoundKey.	We	start	with	x	1	and	x	2.	Suppose	that	E	j	1	(x	1	)	E	j	1	(x	2	)	=	F	j	1	(x	1	x	2	)	for	some	j	1.	If	the	jth	step	is	ShiftRow,	then	the	entries	of	all
matrices	are	given	the	same	permutation,	so	we	have	E	j	(x	1	)	E	j	(x	2	)	=	F	j	(x	1	x	2	).	If	the	jth	step	is	MixColumn,	then	everything	is	multiplied	on	the	left	by	a	matrix	M.	This	again	yields	the	relation	with	j	in	place	of	j	1.	Finally,	if	the	jth	step	is	AddRoundKey,	then	a	matrix	K	is	XORed	with	E	j	1	(x	1	)	and	with	E	j	1	(x	2	).	These	K	s	cancel	each
other.	So	E	j	(x	1	)	E	j	(x	2	)	=	E	j	1	(x	1	)	E	j	1	(x	2	).	Since	F	j	1	=	F	j	in	this	case,	we	obtain	E	j	(x	1	)	E	j	(x	2	)	=	F	j	(x	1	x	2	).	Therefore,	this	relation	holds	for	all	j	(the	case	j	=	0	represents	no	encryption,	so	it	holds	trivially).	In	particular,	since	E	=	E	30,	and	since	F	30	is	encryption	with	the	AddRoundKey	steps	also	removed,	we	have	E(x	1	)	E(x	2	)	=
F(x	1	x	2	),	as	desired.	(c)	Eve	uses	part	(b).	She	computes	E(x	1	)	E(x	2	).	This	is	the	encryption	of	x	1	x	2	using	only	ShiftRow	and	MixColumn,	and	is	independent	of	the	key.	These	steps	are	easily	reversed	to	yield	x	1	x	2.	By	XORing	with	x	1,	Eve	obtains	x	BS(x	1	)	=	99	=	and	BS(x	2	)	=	124	=	,	so	BS(x	1	)	BS(x	2	)	=	But	BS(x	3	)	=	119	=	and	BS(x	4	)
=	123	=	,	so	BS(x	3	)	BS(x	4	)	=	Therefore,	BS	does	not	satisfy	the	equal	difference	property.	By	3(a),	affine	maps	satisfy	this	property,	so	BS	is	not	affine.	23	Chapter	6	-	Exercises	1.	We	have	φ(n)	=	(p	1)(q	1)	=	=	A	quick	calculation	shows	that	(mod	11200).	We	have	(mod	11413),	so	the	plaintext	was	1415	=	no.	2.	(a)	Here	φ(n)	=	4	10	=	40.	We	are
looking	for	a	number	d	such	that	ed	=	1	(mod	40).	Thus,	we	want	to	solve	for	d	in	3d	=	1	(mod	40).	Observe	that	d	=	27	gives	3	27	=	81	=	1	(mod	40).	Hence	d	=	27.	(b)	Here,	you	use	Euler	s	Theorem.	d	is	such	that	3d	=	1	+	kφ(n)	for	some	k.	Then,	c	d	=	m	3d	=	m	1+kφ(n)	=	m	(mod	n)	by	Euler	s	Theorem.	3.	The	two	possible	plaintexts	are	8	and	9.
Encrypt	each	to	get	8	3	(mod	437)	=	75	and	9	3	(mod	437)	=	292.	Hence,	the	correct	plaintext	is	Here,	we	want	a	number	d	such	that	(m	3	)	d	(mod	101)	=	m	3d	=	m	(mod	101).	By	Fermat	s	Little	Theorem,	we	need	to	find	d	such	that	3d	=	1	(mod	100).	Solving,	we	get	d	=	67	and	thus	decryption	is	accomplished	by	c	67	(mod	101).	5.	Choose	d	with	de
1	(mod	p	1).	Then	y	d	x	de	x	1	x	(mod	p),	since	we	work	mod	p	1	in	the	exponent.	6.	The	number	e	is	m	aba1	(mod	n).	Since	aa	1	1	(mod	φ(n)),	and	we	work	mod	φ(n)	in	the	exponent,	we	have	e	m	b	(mod	n).	Therefore	Bob	finds	b	1	with	bb	1	1	(mod	φ(n))	and	computes	e	b1.	This	will	be	m.	7.	Nelson	decrypts	2	e	c	to	get	2	ed	c	d	2c	d	2m	(mod	n),	and
therefore	sends	2m	to	Eve.	Eve	divides	by	2	mod	n	to	obtain	m.	8.	We	have	c	2	c	e2	1	(mod	n).	Therefore,	this	double	encryption	is	mc1c2	the	same	as	single	encryption	with	encryption	exponent	e	1	e	2.	So	the	security	is	at	the	same	level	as	single	encryption.	9.	(a)	x	1	2	φ(n)	(x	p	1	)	(q	1)/2	1	(q	1)/2	1	(mod	p),	and	similarly	for	q.	Note	that	since	q	is
odd,	the	exponent	(q	1)/2	is	an	integer.	The	following	proof	doesn	t	work:	(x	1/2	)	φ(n)	1	(mod	n)	by	Euler.	The	problem	is	that	x	1/2	might	not	make	sense	mod	n.	Fractional	exponents	must	be	avoided.	(b)	Use	the	Chinese	Remainder	Theorem	to	combine	the	two	congruences	from	(a).	(c)	If	ed	1	(mod	1	2	φ(n)),	then	ed	=	φ(n)k	for	some	integer	k.
Therefore	x	ed	x	(x	1	2	φ(n)	)	k	x	1	k	x	(mod	n),	where	the	middle	congruence	used	part	(b).	19	24	e	=	1	means	that	the	ciphertext	is	the	same	as	the	plaintext,	so	there	is	no	encryption.	The	exponent	e	=	2	does	not	satisfy	gcd(e,(p	1)(q	1))	=	1,	so	it	is	not	allowed	in	RSA	(no	d	will	exist).	11.	Since	n	1	n	2,	and	since	they	are	not	relatively	prime,	we	have
gcd(n	1,n	2	)	must	be	a	nontrivial	common	factor	of	n	1	and	n	2.	Therefore,	we	can	factor	n	1	and	n	2	and	break	the	systems.	12.	We	have	(	)	2	(2	7)	2	(mod	n).	Compute	gcd(	,	)	=	Therefore,	=	Let	a	=	,	b	=	,	and	c	=	Then	(abc)	2	=	(mod	).	Next,	we	need	to	check	that	abc	±6.	After	that,	factoring	is	accomplished	by	just	calculating	gcd(x	y,n).	The
information	=	77	(mod	)	was	just	trick	information.	14.	Use	the	Chinese	remainder	theorem	to	solve	x	7	(mod	p),	x	7	(mod	q).	Then	x	2	49	(mod	p)	and	also	(mod	q),	hence	(mod	pq).	15.	(a)	Note,	if	n	were	prime,	then	k	2	2	n	1	1	(mod	n).	This	would	contradict	the	assumption	in	part	(a),	and	hence	n	must	not	be	prime.	(b)	Suppose	k	2	1	(mod	n),	then
we	have	a	case	of	the	form	x	2	y	2	(mod	n)	yet	x	y	(mod	n),	and	hence	may	factor	by	calculating	gcd(x	y,n).	Here,	x	=	k	and	y	=	1.	Thus,	to	factor,	we	just	calculate	gcd(k	1,	n).	16.	Since	gcd(e	a,e	B	)	=	1,	there	are	integers	x	and	y	with	e	A	x	+	e	B	y	=	1.	Therefore,	m	=	m	1	=	(m	ea	)	x	(m	eb	)	y	c	x	A	cy	B	(mod	n).	Since	Eve	can	calculate	this	last
quantity,	she	can	calculate	m.	17.	Make	a	list	of	1	e,2	e,...,26	e	(mod	n).	For	each	block	of	ciphertext,	look	it	up	on	the	list	and	write	down	the	corresponding	letter.	The	message	given	is	hello.	18.	Let	d	=	gcd(x	+	y,n).	If	d	=	n,	then	n	x	+	y,	hence	x	y,	contradiction.	If	d	=	1,	then	Exercise	3.3(b)	implies	that	n	x	y,	so	x	y	(mod	n),	contradiction.	Since	d
1,n,	we	find	that	d	is	a	nontrivial	factor	of	n.	19.	(a)	m	is	a	multiple	of	(p	1)(q	1),	hence	a	multiple	of	(p	1).	Note	that	gcd(a,n)	=	1	implies	that	gcd(a,p)	=	1.	Since	a	p	1	1	(mod	p),	we	also	have	a	m	1	(mod	p).	Similarly,	a	m	1	(mod	q).	(b)	If	a	0	(mod	p),	then	a	m	1	(mod	p),	from	(a).	Multiply	by	a	to	get	a	m+1	a	(mod	p).	If	0	(mod	p),	then	this	congruence
still	holds,	since	both	sides	are	0	mod	p.	Similarly,	a	m+1	a	(mod	q).	The	Chinese	Remainder	Theorem	allows	us	to	combine	these	to	get	a	m+1	a	(mod	pq).	(c)	Let	m	=	ed	1,	which	is	a	multiple	of	φ(n).	From	(b),	we	have	a	ed	=	a	m	a	(mod	n).	(d)	If	p	and	q	are	large,	then	the	probability	is	only	1/p	that	a	is	a	multiple	of	p	and	1/q	that	a	is	a	multiple	of	q.
Both	1/p	and	1/q	are	small,	so	the	probability	that	gcd(a,n)	1	is	small	(1/p	+	1/q	(1/(pq),	to	be	precise).	20.	We	would	need	ed	1	(mod	(p	1)(q	1)(r	1)).	The	verification	is	the	same	as	the	one	for	RSA.	21.	Note	that	d	=	e,	so	Alice	sends	m	e2	m	ed	m	25	(a)	Note	that	gcd(e,24)	=	1	leaves	only	1,5,7,11,13,17,19,	and	23	as	possibilities.	These	may	be	paired
into	e	and	e	(mod	24)	pairs.	Note	that	e	2	(	e)	2	(mod	24).	Hence,	it	suffices	to	check	just	1,5,7,	and	11	to	see	that	e	2	1	(mod	24).	This	can	be	easily	verified	by	hand.	(b)	The	encryption	exponents	e	are	precisely	those	e	such	that	gcd(e,24)	=	1.	In	RSA,	we	seek	to	find	a	d	such	that	ed	1	(mod	24).	We	already	know	that	e	e	1	(mod	24)	from	part	(a).
Since	gcd(e,24)	=	1,	inverses	are	unique	and	hence	d	=	e.	23.	The	spy	tells	you	that	m	(mod	n).	Hence	ψ	=	acts	like	φ(n)	(in	the	sense	of	Euler	s	Theorem).	Now,	if	we	can	find	a	δ	such	that	eδ	1	(mod	ψ),	then	we	have	that	eδ	=	kψ	+	1	for	some	k,	and	thus	c	δ	=	m	eδ	=	(m	ψ	)	k	m	(mod	n)	=	m.	Therefore,	all	that	is	needed	to	decrypt	is	to	use	the
publicly	available	e	and	solve	eδ	=	1	(mod	12345),	and	then	use	δ	as	the	decryption	exponent.	24.	(a)	Write	de	=	k	for	some	integer	k.	Then	m	de	m	(m	1000	)	k	m	1	k	m	(mod	n).	(b)	There	are	1000	solutions	to	x	(mod	p)	and	1000	solutions	to	x	(mod	q).	There	are	=	10	6	ways	to	combine	them	using	the	Chinese	Remainder	Theorem.	So	there	are	10	6
solutions	to	m	(mod	n).	25.	Since	ed	1	(mod	)	we	have	ed	=	k	for	some	integer	k.	Then	c	d	(mod	)	m	ed	(m	)	k	m	=	m	(mod	).	26.	Let	c	A	and	c	B	be	the	outputs	of	the	two	machines.	Then	c	A	c	B	0	(mod	p)	but	c	B	c	A	1	(mod	q).	Therefore	gcd(c	a	c	b,n)	=	p,	and	q	=	n/p.	27.	(a)	The	new	ciphertext	is	c	e	m	e.	Eve	makes	two	lists:	1.	c	1	x	e	for	all	x	with	1	x
10	9,	and	2.	(100y)	e	for	all	y	with	1	y	A	match	gives	c	1	(100xy)	e,	so	m	=	xy.	Another	way:	Eve	divides	c	1	by	e	(mod	n)	and	then	uses	the	short	message	attack	from	Section	6.2.	(b)	Suppose	the	length	of	m	is	k.	Then	m	m	=	(10	k	+	1)m.	Therefore,	the	encrypted	message	is	(10	k	+1)	e	m	e.	Eve	simply	divides	this	by	(10	k	+1)	e	(mod	n)	and	then	uses
the	short	message	attack.	28.	(a)	Suppose	0	x	<	(	2	1)	n	1	and	s	=	n.	Then	x	+	s	<	(	2	1)	n	1	+	s	<	(	2	1)	n	1	+	n	+	1	=	2n.	(b)	Suppose	p	f(x),	then	(x+s)	2	n	=	kp	for	some	integer	k.	Thus	(x+s)	2	kp	=	n.	Operating	modulo	p	gives	n	(x	+	s)	2	(mod	p).	(c)	From	(b),	n	is	a	square	mod	p,	so	n	a	2.	Since	p	n,	we	have	a	0	(mod	n).	We	obtain	f(x)	(x	+	s)	2	a	2	(x
+	s	+	a)(x	+	s	a)	(mod	p).	Since	p	is	prime,	either	x	+	s	+	a	0	or	x	+	s	a	0	(mod	p).	This	yields	x	±a	s	(mod	p).	Since	p	is	odd	and	a	0,	these	two	values	of	x	are	distinct	mod	p.	(d)	We	subtract	log	p	exactly	for	those	p	for	which	f(x)	0	(mod	p),	so	we	subtract	once	for	each	prime	factor	of	f(x).	Since	we	are	assuming	that	f(x)	=	26	22	p	1	p	2	p	r	is	a	product
of	distinct	primes,	we	have	log	f(x)	log	p	1	log	p	r	=	0.	(e)	If	f(x)	has	a	large	prime	factor	p,	then	the	register	will	be	at	least	log	p,	which	is	large.	If	all	of	the	factors	of	f(x)	are	in	B,	then	the	register	is	0	if	the	prime	factors	are	distinct.	In	general,	the	register	will	contain	a	sum	of	logs	of	some	primes	from	B.	These	will	tend	to	be	small.	Moreover,	the
multiple	prime	factors	of	f(x)	will	tend	to	be	the	small	primes	in	the	factor	base	(for	example,	it	is	much	more	likely	that	2	2	or	3	2	divides	f(x)	than	divides	f(x)).	Therefore,	the	register	will	tend	to	be	small.	(f)	The	procedure	in	d	only	works	with	2	out	of	each	p	values	of	x,	rather	than	with	each	x,	which	is	what	would	happen	with	trial	division.
Subtracting	is	a	much	faster	operation	than	dividing.	Also,	the	subtraction	can	be	done	in	floating	point,	while	the	division	is	done	with	large	integer	arithmetic.	27	Chapter	7	-	Exercises	1.	(a)	Perhaps	the	easiest	way	to	do	this	is	to	list	the	powers	of	2	mod	13	until	we	get	3:	2,2	2	4,2	3	8,	(mod	13).	Therefore	L	2	(3)	=	4.	(b)	2	7	=	(mod	13),	which
implies	that	L	2	(11)	=	(a)	(mod	11),	,	(b)	Since	2	is	a	primitive	root,	2	5	=	2	(11	1)/2	1	(mod	11).	Therefore,	(2	x	)	5	(	1)	x,	so	x	is	odd.	3.	Since	5	is	a	primitive	root,	(mod	1223).	Therefore,	x	(	1)	x,	so	x	is	even.	4.	p	1	=	First	we	compute	L	=	L	2	(14)	mod	2:	We	have	14	(p	1)/2	1	(mod	19),	so	L	1	(mod	2).	Now	compute	L	mod	3:	We	have	14	(p	1)/3	7	(mod
19).	Since	(mod	19),	we	have	L	1	(mod	3).	Now	write	L	=	1+3x	1.	Let	β	(mod	19).	Then	β	(p	1)/	(2	(p	1)/3	)	2,	so	x	1	=	2.	Therefore	L	=	7	(mod	9).	Since	L	1	(mod	2)	from	above,	we	use	the	Chinese	Remainder	Theorem	to	obtain	L	=	(a)	Let	x	=	L	α	(β	1	),	y	=	L	α	(β	2	),	and	z	=	L	α	(β	1	β	2	).	Then	α	x+y	α	x	α	y	α	z	(mod	p).	By	the	proposition	in	Section
3.7,	we	have	x	+	y	z	(mod	p	1),	which	is	what	we	wanted	to	prove.	(b)	First,	we	need	the	fact	that	α	u	α	v	(mod	p)	if	and	only	if	u	v	(mod	ord	p	(α)).	This	is	proved	by	rewriting	the	congruence	as	α	u	v	1	(mod	p)	and	using	Exercise	3.9(d),	which	says	that	α	u	v	1	(mod	p)	if	and	only	if	u	v	0	(mod	ord	p	(α).	Now	use	the	proof	of	part	(a)	above,	with	p	1
replaced	by	ord	p	(α).	Instead	of	using	the	proposition	in	Section	3.7,	use	the	fact	just	proved	(about	u	and	v).	6.	(a)	L	2	(24)	3L	2	(2)	+	L	2	(3)	(mod	100).	Therefore,	L	2	(24)	=	72.	(b)	L	2	(24)	3L	2	(5)	(mod	100).	Therefore,	L	2	(24)	=	Since	11	=	44/2	2,	and	since	(mod	137),	we	have	3	x	Therefore,	x	=	(a)	If	someone	knows	2	x	(mod	p),	it	is	difficult	to
find	x	since	this	is	the	discrete	logarithm	problem.	(b)	If	p	has	only	5	digits,	it	is	easy	to	compute	2	k	(mod	p)	for	k	=	1,2,...p	1	until	the	number	2	x	(mod	p)	is	found.	Then	k	=	x	is	the	password.	9.	(a,	b)	We	have	p	1	=	=	Note	that	(mod	p),	and	23	28	(mod	p).	We	have	2	(p	1)/	(	1)	0	(mod	p),	so	x	0	=	1.	Therefore	β	1	β	2	(mod	p).	Then	β	(p	1)/	(mod	p),	so
x	1	=	0	and	β	2	=	2.	Continuing	in	this	manner,	we	get	x	3	=	=	x	10	=	0	and	β	2	=	=	β	11	=	2.	Then	so	x	11	=	1.	Therefore	β	(p	1)/	=	(mod	p),	β	12	β	11	α	x	(mod	p).	We	have	so	x	12	=	1.	Then	β	(p	1)/	(mod	p),	β	(mod	p).	We	have	so	x	13	=	0	and	β	14	=	β	13	=	256.	Then	so	x	14	=	1	and	Then	so	x	15	=	1	and	β	(p	1)/	(mod	p),	β	(p	1)/	(mod	p),	β	β	(p	1)/
(mod	p),	β	This	means	we	can	stop.	We	have	(mod	p).	(mod	p).	L	3	(2)	=	x	x	15	=	=	Eve	computes	b	1	with	bb	1	1	(mod	p	1).	Then	x	b1	2	αbb1	α	1	α	(mod	p).	11.	m	tr	a	(mod	17).	12.	(a)	Write	d	in	base	N,	so	d	=	a	0	+	a	1	N	with	0	a	i	<	N.	Then	m	c	d	c	a0+a1n	implies	that	mc	a1n	c	a0.	Therefore,	there	is	a	match	for	j	=	a	0	and	k	=	a	1.	This	gives	a	0	+
a	1	N	as	a	candidate	for	d.	(b)	c	=	m	=	1	gives	a	match	for	every	j,k,	so	it	is	unlikely	that	the	first	match	yields	the	correct	d.	(c)	The	lists	are	of	length	approximately	N.	This	is	approximately	the	time	required	to	factor	n	by	dividing	by	all	the	primes	up	to	N.	29	Chapter	8	-	Exercises	1.	It	is	easy	to	construct	collisions:	h(x)	=	h(x+p	1),	for	example.
(However,	it	is	fairly	quickly	computed	(though	not	fast	enough	for	real	use),	and	it	is	preimage	resistant.)	2.	(a)	Finding	a	preimage	is	the	same	as	finding	a	square	root	mod	pq.	This	is	computationally	equivalent	to	factoring	(see	page	88).	(b)	h(x)	h(n	x)	for	all	x,	so	it	is	easy	to	find	collisions.	3.	h	can	be	computed	quickly,	so	(1)	is	satisfied.	However,
h(x	0	0	)	=	x,	so	it	is	not	preimage	resistant.	Taking	different	numbers	of	0-blocks	yields	collisions,	so	it	is	not	strongly	collision-free.	4.	The	probability	that	no	two	have	birthdays	in	the	same	month	is	(	)(	)	(	)	=	(a)	f	(x)	=	1/(1	x)	+	1	=	x/(1	x)	0	when	0	x	<	1.	Also,	g	(x)	=	1/(1	x)	x	=	x(1	2x)/(1	x)	0	when	0	x	1/2.	(b)	f	is	decreasing	and	f(0)	=	0,	so	ln(1	x)	+
x	=	f(x)	0	for	0	x	1/2.	Therefore,	ln(1	x)	x.	The	other	inequality	follows	similarly.	(c)	From	(b),	we	have	j	(	N	j2	N	2	ln	1	j	)	j	N	N.	Summing	for	1	j	r	1	yields	(r	1)r	(r	1)r(2r	1)	r	1	(	2N	6N	2	ln	1	j	)	(r	1)r	N	N.	Since	(r	1)r(2r	1)	<	(r)r(2r)	=	2r	3,	the	result	follows.	(d)	Exponentiate	the	result	in	(c)	and	rearrange	the	exponents.	(e)	As	N,	we	have	c/	N	0,	so	e	c/
N	e	0	=	1.	Therefore,	both	ends	of	the	inequalities	in	(d)	are	close	to	e	λ.	6.	(a)	The	probability	is	(1/2)	j	that	we	succeed	on	the	jth	try,	so	the	expected	number	of	tries	is	1(1/2)+2(1/4)+3(1/8)+.	To	evaluate	this	sum	S,	consider	S	1	S	=	(	)	(	)	2	25	j=1
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