
How	to	set	internet	connection	on	android	phone

http://xeltuve.com/c3?utm_term=how+to+set+internet+connection+on+android+phone






How	to	set	internet	on	phone.	How	to	set	up	internet	on	android	phone.	How	to	put	internet	settings	on	android	phone.

Download	Article	Download	Article	Using	Wi-Fi	|	Using	a	hotspot	Connecting	your	Android	phone	to	a	network	is	very	easy	and	you	can	do	it	in	two	ways:	by	connecting	to	your	own	Wi-Fi	connection	or	by	connecting	to	a	device.	access	point.	A	hotspot	is	similar	to	Wi-Fi	except	that	the	network	is	provided	by	a	phone	and	not	a	modem.	1	Unlock	and
open	the	device.	If	you	have	a	password,	enter	it	now.	2	Go	to	Settings.	Find	the	gear	icon	and	tap	on	it.	3	Tap	Wi-Fi.	The	WLAN	menu	opens.	4	Turn	on	Wi-Fi.	A	list	of	nearby	networks	will	appear.	If	you're	already	connected	to	one	of	these	networks,	your	phone	will	connect	automatically.	If	you	haven't	joined	a	network	yet,	you'll	need	to	add	a	new
one.	Proceed	to	the	next	step	to	add	unrecognized	networks.	5	Enter	the	SSID/name	of	your	network.	6	Enter	the	network	security	type.	This	is	usually	the	WEP	value.	7	Enter	the	network	password.	After	that,	your	phone	should	connect	to	the	network.	1	Go	to	Settings	menu	2.	Go	to	Wi-Fi.	Open	the	Wi-Fi	menu	by	tapping	this	option	in	the	settings
menu.	3	Turn	on	Wi-Fi.	When	the	hotspot	is	detected,	your	phone	will	automatically	connect	to	the	hotspot.	This	is	only	possible	if	the	provider	has	allowed	it.	If	the	access	point	is	not	detected,	you	must	add	it.	Proceed	to	the	next	step	to	add	an	unknown	network.	4	Enter	the	access	point	name.	5	Enter	WEP	as	the	security	type	for	the	access	point.	6
Enter	the	password	of	the	access	point	provider.	If	the	hotspot	is	enabled,	the	phone	should	connect	automatically.	Advertisement	Add	a	new	question	Question	How	do	I	know	if	my	mobile	device	works	with	a	prepaid	SIM	card?	You	can	use	the	internet	to	check	this	by	opening	any	application	that	works	on	the	internet,	e.g.	B.	WhatsApp,	Spotify,
YouTube,	a	browser	for	any	online	search,	etc.	If	you	don't	see	any	results,	you	know	the	internet	isn't	working.	not	working	or	working	on	itTo	use	the	internet,	you	must	have	credit	on	your	SIM	card	or	have	a	paid	data	plan	to	use	the	internet.	My	phone	is	brand	new	and	I	want	it	to	connect	to	the	internet	using	mobile	data.	The	network	type	icon
does	not	appear.	How	can	I	solve	the	problem?	You	have	to	pay	for	an	internet	subscription	–	4G,	5G	or	other	depending	on	the	capacity	of	the	phone.	You	can	call	your	SIM	card/service	provider	customer	service	number	to	find	out	more.	It	will	tell	you	if	you	need	to	top	up	your	4G	data	plan,	if	you	have	data	or	credit	available,	etc.	Or	you	can	search
for	data	plans	online	and	ask	your	dealer	to	activate	your	plan.	There	is	a	number	you	can	call	for	a	set	of	instructions.	Each	service	provider	has	its	own	number.	Start	by	finding	yours.	Q.	How	do	I	find	my	network	settings?	If	you	call	your	service	provider's	customer	service	number	and	ask	for	network	settings,	they	usually	receive	them	via	SMS.



They	also	send	you	a	password	when	prompted	to	use	the	settings	on	your	device.	View	More	Answers	Ask	a	Question	Advertisement	wikiHow	is	a	Wikipedia-like	"wiki,"	meaning	many	of	our	articles	are	co-authored	by	multiple	authors.	9	people	worked	on	this	article,	some	anonymously,	editing	and	improving	it	over	time.	This	article	has	been	viewed
37,923	times.	Contributors:	9	Updated:	July	28,	2022	Views:	37,923	Category:	Android	Print	Send	Fan	Letters	to	Authors	Thank	you	all	authors	for	creating	a	page	that	has	been	read	37,923	times.	You	can	change	network	settings	like	automatic	connections,	traffic	metering,	proxy	settings	and	more.	Control	data	usage	with	metered	Wi-Fi.	Connect
your	phone	to	a	Wi-Fi	network.	Open	the	Settings	app	on	your	phone.	Tap	Network	and	Internet	Internet.	If	you	still	can't	find	it,	ask	your	device	manufacturer	for	help.	Tap	on	the	WiFi	network	you	are	connected	to.	Tap	Network	usage	Consider	as	metered.	If	your	network	has	a	data	limit,	you	can	set	itWi-Fi	in	the	subway.	When	your	network	is
measured,	you	can	have	better	control	over	how	much	data	your	phone	uses	for	downloads	and	other	apps.	Finding	your	phone's	MAC	address	Open	the	Settings	app	on	your	phone.	Tap	About	phone.	Scroll	down	to	"Wi-Fi	MAC	Address".	Phones	running	Android	10	and	above	have	a	different	MAC	address.	To	find	it:	Turn	on	Wi-Fi.	Open	the	Settings
app	on	your	phone.	Click	Network	and	Internet.	Next	to	Network,	click	Settings.	Scroll	down	to	"Random	MAC	Address".	Advice.	If	you	are	setting	up	parental	controls	for	your	network,	please	provide	both	MAC	addresses.	Private	DNS	Important!	By	default,	the	phone	uses	private	DNS	with	all	networks	that	can	use	private	DNS.	We	recommend
leaving	private	DNS	enabled.	Enable	or	disable	private	DNS	or	change	its	settings.	Open	the	Settings	app	on	your	phone.	Click	Network	and	Private	Internet	DNS.	Choose	one	of	the	following	options:	Off	Automatic	private	DNS	provider	hostname	Tip.	Private	DNS	helps	protect	only	DNS	queries	and	responses.	He	cannot	protect	anything	else.
Changing	other	Wi-Fi	settings	Open	the	Settings	app	on	your	phone.	Click	Network	and	Internet.	Click	"Network	Settings"	at	the	bottom.	Tap	an	option.	Depends	on	phone	and	android	version.	Auto	turn	on	Wi-Fi:	Set	Wi-Fi	to	turn	on	automatically	near	saved	networks.	Read	about	saved	networks.	Open	Network	Notifications:	Get	notified	when
automatic	connections	to	high-quality	open	networks	are	not	available.	Other	installation	certificates.	Digital	certificates	can	identify	your	phone.	Read	about	certificates.	Wi-Fi	Direct:	Let	your	phone	connect	wirelessly	to	other	devices	that	can	use	Wi-Fi	Direct.	If	you're	using	an	earlier	version	of	Android,	you	can	also	select	one	of	the	following
options:	WPS	button:	Turn	on	Wi-Fi	Protected	Setup	(WPS)	for	a	network	that	supports	WPS.	WPS	PIN	entry:	Enter	the	personal	identification	number	(PIN)	of	Wi-Fi	Protected	Setup	(WPS).	Related	Resources	Connect	to	Wi-Fi	Networks	Tether	to	a	Wi-Fi	Hotspot	Get	answers	from	community	experts	if	you	haven't	bought	yetphone	from	SaskTel	or
cannot	receive	over-the-air	programming,	you	may	need	to	manually	enter	network	information	and	settings.	If	you	need	assistance,	visit	a	SaskTel	store	or	authorized	reseller.	Fees	may	apply	for	manual	programming	assistance.	NOTE.	A	SaskTel	SIM	card	must	be	installed	to	use	these	settings.	Pull	down	the	notification	bar	and	tap	Settings	(gear
icon).	Tap	Connections	>	Mobile	networks	>	Hotspot	names.	If	there	are	no	access	point	names	in	the	list,	click	Add	(top	right).	Enter	your	SaskTel	browser	and	MMS	settings	(required	for	multimedia	messaging	to	work).	Check	your	internet	connection:	Open	your	phone's	internet	browser	and	go	to	the	website.	Test	SMS:	Open	SMS	on	your	phone
and	try	to	send	a	picture.	Calling	1.800.SASKTEL	(1.800.727.5835)	(hours	support,	menu	options)	is	still	not	working.	Android	is	owned	by	Google,	Inc.	trade	mark.	Updated	on	January	18,	2022	at	15:21.	In	order	to	perform	network	operations	in	the	application,	the	following	permissions	must	be	present	in	the	manifest:	Both	internet	permissions,
both	ACCESS_NETWORK_STATE	permissions	are	normal	permissions,	meaning	they	are	granted	during	installation	and	do	not	need	to	be	requested	at	runtime.	Best	Practices	for	Secure	Network	Communications	Before	you	add	network	functionality	to	your	application,	ensure	that	your	application's	data	and	information	is	secure	while	it	is	being
sent	over	the	network.	To	do	this,	follow	these	network	security	guidelines:	Minimize	the	amount	of	sensitive	or	personal	user	data	sent	over	the	network.	Send	all	traffic	from	your	application	over	SSL.	Consider	creating	a	network	security	configuration	that	allows	your	application	to	trust	custom	certificate	authorities	(CAs)	or	restrict	the	set	of
system	CAs	it	trusts	for	secure	communication.	For	more	information	about	using	a	secure	networksee	network	security	tips.	Select	an	HTTP	client	Most	web	applications	use	the	HTTP	protocol	to	send	and	receive	data.	The	Android	platform	includes	an	HttpsURLConnection	client	that	supports	TLS,	streaming	upload	and	download,	configurable
timeouts,	IPv6,	and	connection	pooling.	In	this	section,	we	use	the	Retrofit	HTTP	client	library,	which	allows	you	to	create	an	HTTP	client	declaratively.	The	update	also	supports	automatic	serialization	of	request	structures	and	deserialization	of	response	structures.	Resolving	DNS	queries	Android	10	devices	(API	level	29)	and	higher	have	built-in
support	for	custom	DNS	lookups	using	both	plain	text	and	DNS-over-TLS	lookups.	The	DnsResolver	API	provides	a	generic	asynchronous	name	resolution	mechanism	that	can	search	for	SRV,	NAPTR,	and	other	types	of	records.	Note	that	parsing	the	responses	must	be	done	by	the	application.	On	devices	running	Android	9	(API	level	28)	and	below,
the	platform	DNS	resolver	only	supports	A	and	AAAA	records.	It	looks	for	IP	addresses	associated	with	a	name,	but	does	not	support	other	record	types.	For	NDK-based	apps,	see	android_res_nsend.	Encapsulating	network	operations	with	a	repository	To	simplify	the	process	of	implementing	network	operations	and	reduce	code	duplication	in	different
parts	of	an	application,	you	can	use	the	repository	design	pattern.	A	repository	is	a	class	that	handles	data	operations	and	provides	a	pure	API	abstraction	for	specific	data	or	resources.	You	can	use	Retrofit	to	declare	an	interface	that	specifies	the	HTTP	method,	URL,	arguments,	and	response	type	for	network	operations,	as	in	the	following	example:
interface	UserService	{	@GET("/users/{id}")	suspend	fun	getUser(	@	Path(	"	id")	id:	String):	User	}	public	interface	UserService	{	@GET("/user/{id}")	Call	getUserById(@Path("id")	String	id);	}	In	the	Repository	class,	functions	can	encapsulate	network	operations	and	provide	their	results.	This	encapsulation	ensures	that	the	components	calling	the
repository	do	not	need	it.how	data	is	stored.	All	subsequent	changes	to	the	data	store	are	also	isolated	by	the	Repository	class.	class	constructor	UserRepository	(private	userService:	UserService)	{	fun	expose	getUserById	(id:	String):	user	{	return	userService.getUser	(id)	}	}	class	UserRepository	{	private	UserService	userService;	public
UserRepository	(	UserService	userService	)	{	this.userService	=	userService;	}	public	Call	getUserById	(string	id)	{	return	userService.getUser	(id);	}	}	To	avoid	creating	an	unresponsive	user	interface,	do	not	perform	network	operations	on	the	main	thread.	By	default,	Android	requires	a	thread	other	than	the	main	UI	thread	to	perform	network
operations;	if	not,	a	NetworkOnMainThreadException	is	thrown.	In	the	UserRepository	class	shown	in	the	previous	code	example,	the	network	operation	is	not	actually	started.	The	caller	of	UserRepository	must	implement	the	stream	using	coroutines	or	the	enqueue()	function.	Saving	configuration	changes	When	a	configuration	change	occurs,	eg.
screen	rotation,	your	fragment	or	activity	will	be	destroyed	and	recreated.	Any	data	not	stored	in	the	state	of	your	fragment	or	activity	instance,	which	should	contain	only	a	small	amount	of	data,	will	be	lost	and	you	may	have	to	make	network	requests	again.	You	can	use	ViewModel	to	have	your	data	persist	configuration	changes.	ViewModel	is	a
component	designed	to	store	and	manage	data	related	to	the	user	interface	as	part	of	its	life	cycle.	Using	the	previously	created	UserRepository,	the	ViewModel	can	make	the	necessary	network	requests	and	provide	the	result	for	your	fragment	or	activity	using	LiveData:	MainViewModel	class	constructor(savedStateHandle:	SavedStateHandle,
userRepository:	UserRepository)	:	ViewModel()	{	private	val	userId:	String	=	saveStateH["uid	"]	?:	throw	IllegalArgumentException("No	user	ID")	private	val	_user	=	MutableLiveData()	val	user	=	_user	as	LiveData	init	{	viewModelScope.launch	{{	//	Calling	the	repository	is	safe	because	it	defers	execution	//	from	the	main	thread	val	user	=
userRepository.getUserById(userId)	_user.value	=	user	}	catch	(error:	Exception)	{	//	show	error	message	to	user	}	}	}	}	class	MainViewModel	extends	ViewModel	{	private	final	MutableLiveData	_user	=	new	MutableLiveData();	LiveData	user	=	(LiveData)	_user;	public	MainViewModel(SavedStateHandle	savedStateHandle,	UserRepository
userRepository)	{	String	userId	=	savedStateHandle.get("uid");	Call	userCall	=	userRepository.getUserById(userId);	userCall.enqueue(new	Callback()	{	@Override	public	void	onResponse(Call	call,	Response	response)	{	if	(response.isSuccessful())	{	_user.setValue(response.body())	}	}	@Override	public	void	onFailure(Call	call,	Throwable	t)	{	//	Show
the	user	an	error	message	}	});	}	}	For	more	information	on	this	topic,	see	these	related	guides:	Guides:


